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q Ensuring optimal operating conditions for rotating machinery 
is essential in industrial applications

q Fault diagnosis methods can be:
q Analytical

q Knowledge/physics-driven

q Data-driven

q Data-driven deep learning (DL) methods for fault diagnosis 
from vibration signals are most popular
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DL-based fault diagnosis in literature:

Multi-layer 
perceptron

[Chen and Mo, 2004]

[Rafiee et al., 2007]

[Bin et al., 2012]

[Chandra and Sekhar, 2016]

Convolutional 
neural network

[Janssens et al., 2016]

[Xia at al., 2017]

[Guo et al., 2018]

[Chen et al., 2020]

[Li et al., 2020]

Recurrent neural 
network and LSTM

[Yuan et al., 2016]

[Yang et al., 2018]

[Jalayer et al., 2021] 

[Zhang et al., 2021]

Attention and 
transformer

[Pei et al., 2021]

[Zhao et al., 2021]

[Jin et al., 2022]

[Shao et al., 2023]
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q Performance of data-driven DL algorithms depends on the quality and quantity of training data

q Collecting, labeling, and storing sensor data is resource-intensive for individual factories

q Similar data at other factories cannot be pooled due to its sensitive nature

q Two main bottlenecks for DL-based fault diagnosis:

A U T O M A T I O N  A N D  D I G I T A L  M A N U F A C T U R I N G  L A B ,  M E C H A N I C A L  S C I E N C E  A N D  E N G I N E E R I N G G R A I N G E R  E N G I N E E R I N G

Introduction

Federated learning (FL) allows multiple manufacturers to build a 
collaborative DL model while keeping their training data private
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Server

The Federated Averaging (FedAvg) algorithm:

q Privacy advantage over 
centralized learning

q Ability to handle non-IID 
data

q Ability to learn over 
unbalanced datasets

Federated learning: FedAvg algorithm
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Data collection and preprocessing

M C A B C

M Motor A RotorsB C Bearings
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q A specialized machinery fault simulator (MFS) 
used to collect mixed fault signals

q MFS consists of
q Motor

q Two bearings

q Two rotors

q A combination of six rotor and eight bearing 
conditions result in 48 total machine health states

q A total of 82 hours worth of data collected

q Tachometer (rotating speed)

q Accelerometer (lateral vibrations)
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Data collection and preprocessing

Class Rotor 1 2 3 4 5 6
Bearing Condition Normal A1B1A A1B1O A2A A2O A3A

1 Normal 1 2 3 4 5 6

2 BW1 7 8 9 10 11 12

3 BW2 13 14 15 16 17 18

4 BW3 19 20 21 22 23 24

5 BW4 25 26 27 28 29 30

6 IR 31 32 33 34 35 36

7 OR 37 38 39 40 41 42

8 IOR 43 44 45 46 47 48
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q Signals collected at 720, 840, 960, 1080, 1200 RPM, then interpolated to 600 RPM

q 1920 signals for each class x 48 classes = 92,160 signals in total
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Case study: Data distributions
Balanced IID

Balanced IID

All clients have all mixed fault labels
All clients have equal number of samples
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All clients have equal number of samples
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Case study: Data distributions
Balanced IIDBalanced non-IIDUnbalanced non-IID

Unbalanced non-IID

All clients do not have all mixed fault labels
All clients do not have equal number of sample
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Case study: Network architecture
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Case study: Hyperparameters
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q 80-20 train-test split at each factory

q 50 server rounds for Bearing CNN
100 server rounds for Rotor CNN

q 5 local epochs

q Client fraction 0.33 (10 out of 30 selected per round)

q Stochastic gradient descent as optimizer

q Learning rate 0.001 for all experiments

Server

Factory 1 Factory 𝒊 Factory 30
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Case study: Results

Centralized
Federated

Balanced 
IID

Balanced 
non-IID

Unbalanced 
non-IID

Rotor 95.9 95.6 93.7 93.1

Bearing 99.8 99.7 99.6 99.5

Mixed 95.8 95.5 93.2 92.8

Performance of FL and centralized 
learning is comparable even for 
challenging data distributions
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Balanced IID Balanced non-IID Unbalanced non-IID
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Case study: Results
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1500 samples per client 30 clients

q FL outperforms individual learning
as factories lack sufficient data

q FL is highly data-efficient
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Case study: Results
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Global 
FL Model

Clients develop

new types of faults

New fault types 
classified 

accurately 

Client 1

Client 2

Client m

... ...
(48)

Train

Test

q All clients do not have all fault types in training

q Global FL model has 92% accuracy on all 48 mixed faults

q The global FL model enables identification of previously 
unseen fault types
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Conclusion and future work
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q We propose FL-based collaborative and privacy-preserving DL for mixed fault diagnosis 
in rotating machinery

q FL provides a ‘win-win’ paradigm as its performance is 

q comparable to centralized learning

q significantly better than individual learning

even under unbalanced and non-IID distributions across factories

q Future work may focus on

Enhanced privacy
guarantees

Model 
personalization

System 
design

Sustainable incentive 
mechanisms
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Federated learning: Problem formulation
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Factory 1
Data

Factory 𝒊
Data

Factory 𝑚
Data

q Fault data distributed over 𝑚 factories or ‘clients’

q Each factory has a local supervised learning 
dataset 𝐷! of size 𝑛!

𝐷2 ≔ 𝑥3, 𝑦3 345
6!

𝑥 is the vibration signal
𝑦 is the fault label

Third party

We want to construct an optimal global classifier for all 𝑚 factories 
without directly sharing data with each other or a third party
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Federated averaging
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Confusion matrix

19



A U T O M A T I O N  A N D  D I G I T A L  M A N U F A C T U R I N G  L A B ,  M E C H A N I C A L  S C I E N C E  A N D  E N G I N E E R I N G G R A I N G E R  E N G I N E E R I N GA U T O M A T I O N  A N D  D I G I T A L  M A N U F A C T U R I N G  L A B ,  M E C H A N I C A L  S C I E N C E  A N D  E N G I N E E R I N G G R A I N G E R  E N G I N E E R I N G

Confusion matrix

20



A U T O M A T I O N  A N D  D I G I T A L  M A N U F A C T U R I N G  L A B ,  M E C H A N I C A L  S C I E N C E  A N D  E N G I N E E R I N G G R A I N G E R  E N G I N E E R I N GA U T O M A T I O N  A N D  D I G I T A L  M A N U F A C T U R I N G  L A B ,  M E C H A N I C A L  S C I E N C E  A N D  E N G I N E E R I N G G R A I N G E R  E N G I N E E R I N G

FL with extreme data heterogeneity
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