

A federated learning approach to mixed fault diagnosis in rotating machinery

Manan Mehta¹, Siyuan Chen¹, Haichuan Tang², Chenhui Shao¹ ¹Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA ²CRRC Academy, Beijing 100161, China

North American Manufacturing Research Conference (NAMRC) 51 June 14th 2023 Rutgers University, New Brunswick, NJ, USA

AUTOMATION AND DIGITAL MANUFACTURING LAB, MECHANICAL SCIENCE AND ENGINEERING

GRAINGER ENGINEERING

Introduction

Ensuring optimal operating conditions for rotating machinery is essential in industrial applications

- □ Fault diagnosis methods can be:
 - Analytical
 - □ Knowledge/physics-driven
 - Data-driven

Data-driven deep learning (DL) methods for fault diagnosis from vibration signals are most popular

Introduction

Γ

DL-based fault diagnosis in literature:

Multi-layer perceptron

[Chen and Mo, 2004] [Rafiee et al., 2007] [Bin et al., 2012] [Chandra and Sekhar, 2016]

Convolutional neural network

[Janssens et al., 2016] [Xia at al., 2017] [Guo et al., 2018] [Chen et al., 2020] [Li et al., 2020]

Recurrent neural network and LSTM

[Yuan et al., 2016] [Yang et al., 2018] [Jalayer et al., 2021] [Zhang et al., 2021]

Attention and transformer

[Pei et al., 2021] [Zhao et al., 2021] [Jin et al., 2022] [Shao et al., 2023]

Introduction

- □ Performance of data-driven DL algorithms depends on the quality and quantity of training data
- Collecting, labeling, and storing sensor data is resource-intensive for individual factories
- □ Similar data at other factories cannot be pooled due to its sensitive nature
- Two main bottlenecks for DL-based fault diagnosis:

Federated learning (FL) allows multiple manufacturers to build a collaborative DL model while keeping their training data private

Federated learning: FedAvg algorithm

- A specialized machinery fault simulator (MFS) used to collect mixed fault signals
- □ MFS consists of
 - □ Motor □ Tachometer (rotating speed)
 - □ Two bearings □ Accelerometer (lateral vibrations)
 - □ Two rotors
- A combination of six rotor and eight bearing conditions result in 48 total machine health states
- □ A total of 82 hours worth of data collected

	Rotor	A F	Rotor B										
				44040	Class	Rotor	1	2	3	4	5	6	
				AIBIO	Bearing	Condition	Normal	A1B1A	A1B1O	A2A	A20	A3A	
Bearing					1	Normal	1	2	3	4	5	6	
					2	BW1	7	8	9	10	11	12	
					3	BW2	13	14	15	16	17	18	
					4	BW3	19	20	21	22	23	24	
				Pooring	5	BW4	25	26	27	28	29	30	
				Bearing	Dearing	6	IR	31	32	33	34	35	36
					7	OR	37	38	39	40	41	42	
				_	8	IOR	43	44	45	46	47	48	

	Rotor	A R	otor B									
					Class	Rotor	1	2	3	4	5	6
				AZA	Bearing	Condition	Normal	A1B1A	A1B1O	A2A	A20	A3A
Bearing					1	Normal	1	2	3	4	5	6
					2	BW1	7	8	9	10	11	12
					3	BW2	13	14	15	16	17	18
	· _ · - · _				4	BW3	19	20	21	22	23	24
					5	BW4	25	26	27	28	29	30
				bearing	6	IR	31	32	33	34	35	36
					7	OR	37	38	39	40	41	42
					8	IOR	43	44	45	46	47	48

	Rotor	A R	otor B									
				100	Class	Rotor	1	2	3	4	5	6
				A20	Bearing	Condition	Normal	A1B1A	A1B1O	A2A	A2O	A3A
Bearing					1	Normal	1	2	3	4	5	6
					2	BW1	7	8	9	10	11	12
					3	BW2	13	14	15	16	17	18
					4	BW3	19	20	21	22	23	24
					5	BW4	25	26	27	28	29	30
				Dearing	6	IR	31	32	33	34	35	36
					7	OR	37	38	39	40	41	42
				_	8	IOR	43	44	45	46	47	48

	Rotor	A F	Rotor B	,								
				A O A	Class	Rotor	1	2	3	4	5	6
				A3A	Bearing	Condition	Normal	A1B1A	A1B1O	A2A	A2O	A3A
Bearing					1	Normal	1	2	3	4	5	6
					2	BW1	7	8	9	10	11	12
	_				3	BW2	13	14	15	16	17	18
	· _ · - · _		-		4	BW3	19	20	21	22	23	24
				Decripe	5	BW4	25	26	27	28	29	30
				Bearing	6	IR	31	32	33	34	35	36
					7	OR	37	38	39	40	41	42
					8	IOR	43	44	45	46	47	48

	Rotor	· A	Rotor	В			-					
		ן			Class	Rotor	1	2	3	4	5	6
				BVV1 – BVV4	Bearing	Condition	Normal	A1B1A	A1B1O	A2A	A2O	A3A
Bearing					1	Normal	1	2	3	4	5	6
					2	BW1	7	8	9	10	11	12
				<u>O</u>	3	BW2	13	14	15	16	17	18
					4	BW3	19	20	21	22	23	24
				Pooring	5	BW4	25	26	27	28	29	30
				bearing	6	IR	31	32	33	34	35	36
					7	OR	37	38	39	40	41	42
					8	IOR	43	44	45	46	47	48

	Rotor	A R	otor l	B								
			\bigcap		Class	Rotor	1	2	3	4	5	6
				OR	Bearing	Condition	Normal	A1B1A	A1B1O	A2A	A2O	A3A
					1	Normal	1	2	3	4	5	6
					2	BW1	7	8	9	10	11	12
					3	BW2	13	14	15	16	17	18
Bearing					4	BW3	19	20	21	22	23	24
				Decring	5	BW4	25	26	27	28	29	30
				bearing	6	IR	31	32	33	34	35	36
					7	OR	37	38	39	40	41	42
					8	IOR	43	44	45	46	47	48

	Rotor	·A F	Rotor B									
)			Class	Rotor	1	2	3	4	5	6
				IOR	Bearing	Condition	Normal	A1B1A	A1B1O	A2A	A2O	A3A
Bearing					1	Normal	1	2	3	4	5	6
					2	BW1	7	8	9	10	11	12
					3	BW2	13	14	15	16	17	18
					4	BW3	19	20	21	22	23	24
					5	BW4	25	26	27	28	29	30
				bearing	6	IR	31	32	33	34	35	36
					7	OR	37	38	39	40	41	42
		J			8	IOR	43	44	45	46	47	48

□ Signals collected at 720, 840, 960, 1080, 1200 RPM, then interpolated to 600 RPM

□ 1920 signals for each class x 48 classes = 92,160 signals in total

i a

0

С

1

) (

εςτιι

3

AUTOMATION AND DIGITAL MANUFACTURING LAB, MECHANICAL SCIENCE AND ENGINEERING

Case stuc / Diacentuin

Case study: Network architecture

Case study: Hyperparameters

- 80-20 train-test split at each factory
- □ 50 server rounds for Bearing CNN 100 server rounds for Rotor CNN
- 5 local epochs
- Client fraction 0.33 (10 out of 30 selected per round)
- Stochastic gradient descent as optimizer
- Learning rate 0.001 for all experiments

Case study: Results

		Federated										
	Centralized	Balanced IID	Balanced non-IID	Unbalanced non-IID								
Rotor	95.9	95.6	93.7	93.1								
Bearing	99.8	99.7	99.6	99.5								
Mixed	95.8	95.5	93.2	92.8								

Performance of FL and centralized learning is comparable even for challenging data distributions

Case study: Results

Case study: Results

□ All clients do not have all fault types in training

- Global FL model has 92% accuracy on all 48 mixed faults
- The global FL model enables identification of previously unseen fault types

Conclusion and future work

- We propose FL-based collaborative and privacy-preserving DL for mixed fault diagnosis in rotating machinery
- □ FL provides a 'win-win' paradigm as its performance is
 - □ comparable to centralized learning
 - □ significantly better than individual learning

even under unbalanced and non-IID distributions across factories

□ Future work may focus on

Enhanced privacy guarantees

Model personalization

System design

Sustainable incentive mechanisms

References

- 1. Chen, C., & Mo, C. (2004). A method for intelligent fault diagnosis of rotating machinery. *Digital Signal Processing*, *14*(3), 203-217.
- Rafiee, J., Arvani, F., Harifi, A., & Sadeghi, M. H. (2007). Intelligent condition monitoring of a gearbox using artificial neural network. *Mechanical systems and signal processing*, 21(4), 1746-1754.
- 3. Bin, G. F., Gao, J. J., Li, X. J., & Dhillon, B. S. (2012). Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network. *Mechanical Systems and Signal Processing*, *27*, 696-711.
- 4. Chandra, N. H., & Sekhar, A. S. (2016). Fault detection in rotor bearing systems using time frequency techniques. *Mechanical Systems and Signal Processing*, 72, 105-133.
- 5. Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., ... & Van Hoecke, S. (2016). Convolutional neural network-based fault detection for rotating machinery. *Journal of Sound and Vibration*, *377*, 331-345.
- 6. Xia, M., Li, T., Xu, L., Liu, L., & De Silva, C. W. (2017). Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. *IEEE/ASME transactions on mechatronics*, 23(1), 101-110.
- 7. Guo, S., Yang, T., Gao, W., & Zhang, C. (2018). A novel fault diagnosis method for rotating machinery based on a convolutional neural network. *Sensors*, *18*(5), 1429.
- 8. Chen, S., Meng, Y., Tang, H., Tian, Y., He, N., & Shao, C. (2020). Robust deep learningbased diagnosis of mixed faults in rotating machinery. *IEEE/ASME Transactions on Mechatronics*, 25(5), 2167-2176.
- 9. Yongbo, L. I., Xiaoqiang, D. U., Fangyi, W. A. N., Xianzhi, W. A. N. G., & Huangchao, Y. U. (2020). Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging. *Chinese Journal of Aeronautics*, *33*(2), 427-438.

- 10. Yuan, M., Wu, Y., & Lin, L. (2016, October). Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. In *2016 IEEE international conference on aircraft utility systems (AUS)* (pp. 135-140). IEEE.
- 11. Yang, R., Huang, M., Lu, Q., & Zhong, M. (2018). Rotating machinery fault diagnosis using long-short-term memory recurrent neural network. *IFAC-PapersOnLine*, *51*(24), 228-232.
- 12. Jalayer, M., Orsenigo, C., & Vercellis, C. (2021). Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms. *Computers in Industry*, *125*, 103378.
- 13. Zhang, Y., Zhou, T., Huang, X., Cao, L., & Zhou, Q. (2021). Fault diagnosis of rotating machinery based on recurrent neural networks. *Measurement*, *171*, 108774.
- 14. Pei, X., Zheng, X., & Wu, J. (2021). Rotating machinery fault diagnosis through a transformer convolution network subjected to transfer learning. *IEEE Transactions on Instrumentation and Measurement*, *70*, 1-11.
- 15. Zhao, B., Zhang, X., Zhan, Z., & Wu, Q. (2021). Deep multi-scale adversarial network with attention: A novel domain adaptation method for intelligent fault diagnosis. *Journal of Manufacturing Systems*, *59*, 565-576.
- 16. Jin, Y., Hou, L., & Chen, Y. (2022). A time series transformer-based method for the rotating machinery fault diagnosis. *Neurocomputing*, *494*, 379-395.
- 17. Shao, H., Li, W., Cai, B., Wan, J., Xiao, Y., & Yan, S. (2023). Dual-Threshold Attention-Guided Gan and Limited Infrared Thermal Images for Rotating Machinery Fault Diagnosis Under Speed Fluctuation. *IEEE Transactions on Industrial Informatics*.

Thank You!

Manan Mehta Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign mananm2@illinois.edu

AUTOMATION AND DIGITAL MANUFACTURING LAB, MECHANICAL SCIENCE AND ENGINEERING

GRAINGER ENGINEERING

Backup Slides

Manan Mehta Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign mananm2@illinois.edu

AUTOMATION AND DIGITAL MANUFACTURING LAB, MECHANICAL SCIENCE AND ENGINEERING

GRAINGER ENGINEERING

Federated learning: Problem formulation

 \Box Fault data distributed over *m* factories or 'clients'

□ Each factory has a local supervised learning dataset D_i of size n_i

 $D_i \coloneqq \left\{ \left(x_j, y_j \right) \right\}_{j=1}^{n_i}$

x is the vibration signaly is the fault label

We want to construct an optimal global classifier for all m factories without directly sharing data with each other or a third party

17

Federated averaging

Algorithm 1 Federated Averaging (FedAvg)

Require: Distributed data $\{\mathcal{D}_k\}_1^m$ across *m* clients, client fraction *c*, number of local epochs *E*, local mini-batch size *B*, local learning rate η , number of server rounds *S*

Server side:

- 1: initialize the global model with parameters θ_0
- 2: for each server round t = 1, 2, ..., S do
- 3: select a random subset m_t of $c \cdot m$ clients
- 4: send current global model θ_{t-1} to the selected clients
- 5: **for** client $k \in m_t$ **in parallel do**
- 6: $\theta_t^k \leftarrow \text{ClientUpdate}(k, \theta_{t-1})$
- 7: receive updates θ_t^k from client k
- 8: compute weighted average and update global model

$$\theta_t \leftarrow \sum_{k=1}^m \frac{n_k}{n} \theta_t^k$$

Client side: Run ClientUpdate (k, θ) on client k

- 1: initialize the local model with θ
- 2: for each local epoch $1, 2, \ldots, E$ do
- 3: **for** each mini-batch b of size B in D_k **do**

4:
$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathscr{C}(b)$$

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics* (pp. 1273-1282). PMLR.

Confusion matrix

	← -	2006	0	25	0	48	0	~	- 2020	0 0	35	0	24	0		← -	2026	1	27	0	25	0
ault	∾ -	0	1928	0	123	1	1	2	- 3	1795	0	252	0	3		N -	3	1779	1	269	0	1
Rotor Fa	ო -	16	0	1934	2	68	0	ი	- 19	0	1939	0	62	0		ო -	43	0	1869	2	106	0
licted F	4 -	0	121	0	1853	0	5	4	- 1	66	1	1910	0	1		4 -	0	96	1	1856	0	26
Prec	ۍ -	57	0	62	0	191:	2 0	ъ	- 145	1	142	0	174:	3 0		ب م	86	2	138	0	1805	0
	မ - ပ	0	1	0	0	0	1997	9	- 0	10	0	6	0	1982		မ -	0	4	0	7	0	1987
		1	ź	3 Frue Ro	4 otor Fa	5 ult	6	-	1	2	່ Srue Ro	4 otor Fa	5 ault	6			1	2	3 True Ro	4 tor Fa	5 ult	6
	~ -	1535	0 0	0 0	0	0	0 0	-	-1535	0 (0 0	0	0	0 0		┯ -	1535	0 0	0 0	0	0 0	0
, It	∾ -	0 1	503 () 1	0	0	0 0	2	- 0	1503 () 1	0	0	0 0		∾ -	0 1	504 (0 0	0	0 0	0 0
g Faı	ო -	0	0 15	04 0	0	0	0 0	က	- 0	0 15	04 0	0	0	0 0		ო -	0	0 15	04 0	0	0 0	0 0
earin	4 -	2	0 1	0 1560	6	0	0 0	4	- 2	1 2	3 1530	0 19	0	0 3		4 -	4	3 1	7 1544	9	1 0	0 0
ted B	ഹ -	4	0 () 2	1508	0	0 0	ъ С	- 3	0 () 4	1507	0	0 0		- <u>م</u>	5	1 () 3	1504	0 0) 1
redic	ം -	0	0 (0 0	0	1480	0 0	9	- 0	0 (0 0	0	1480	0 0		မ -	0	0 (0 0	0 1	480 0	0
٩	~ -	0	0 (0 0	0	0 1	529 0	~	- 0	0 (0 0	0	0 1	529 0		~ -	0	0 (0 0	0	0 15	29 0
	∞ -	0	0 () 1	0	0	0 1515	5 ∞	- 0	0 (0 0	0	1	0 151	5	∞ -	0	0 0	0 0	0	0 0	151
		1	2 3 Ti	3 4 rue Bea	5 arina F	6 ault	7 8	_	1	2 : T	3 4 rue Bea	5 aring F	6 ault	7 8			1	2 : T	3 4 rue Bea	5 ring Fa	6 7 ault	8

<u>ן</u>

19

FL with extreme data heterogeneity

Mehta, M., & Shao, C. (2023). A Greedy Agglomerative Framework for Clustered Federated Learning. IEEE Transactions on Industrial Informatics.